3.5.76 \(\int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx\) [476]

3.5.76.1 Optimal result
3.5.76.2 Mathematica [B] (verified)
3.5.76.3 Rubi [A] (verified)
3.5.76.4 Maple [A] (verified)
3.5.76.5 Fricas [B] (verification not implemented)
3.5.76.6 Sympy [F]
3.5.76.7 Maxima [F(-1)]
3.5.76.8 Giac [A] (verification not implemented)
3.5.76.9 Mupad [F(-1)]

3.5.76.1 Optimal result

Integrand size = 31, antiderivative size = 94 \[ \int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\frac {3 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{a^{3/2} d}-\frac {\cos (c+d x)}{a d \sqrt {a+a \sin (c+d x)}}-\frac {\cot (c+d x) \sqrt {a+a \sin (c+d x)}}{a^2 d} \]

output
3*arctanh(cos(d*x+c)*a^(1/2)/(a+a*sin(d*x+c))^(1/2))/a^(3/2)/d-cos(d*x+c)/ 
a/d/(a+a*sin(d*x+c))^(1/2)-cot(d*x+c)*(a+a*sin(d*x+c))^(1/2)/a^2/d
 
3.5.76.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(220\) vs. \(2(94)=188\).

Time = 1.13 (sec) , antiderivative size = 220, normalized size of antiderivative = 2.34 \[ \int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\frac {\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^3 \left (2-8 \cos \left (\frac {1}{2} (c+d x)\right )-\cot \left (\frac {1}{4} (c+d x)\right )+6 \log \left (1+\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-6 \log \left (1-\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+\frac {2 \sin \left (\frac {1}{4} (c+d x)\right )}{\cos \left (\frac {1}{4} (c+d x)\right )-\sin \left (\frac {1}{4} (c+d x)\right )}-\frac {2 \sin \left (\frac {1}{4} (c+d x)\right )}{\cos \left (\frac {1}{4} (c+d x)\right )+\sin \left (\frac {1}{4} (c+d x)\right )}+8 \sin \left (\frac {1}{2} (c+d x)\right )-\tan \left (\frac {1}{4} (c+d x)\right )\right )}{4 d (a (1+\sin (c+d x)))^{3/2}} \]

input
Integrate[(Cos[c + d*x]^2*Cot[c + d*x]^2)/(a + a*Sin[c + d*x])^(3/2),x]
 
output
((Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^3*(2 - 8*Cos[(c + d*x)/2] - Cot[(c 
+ d*x)/4] + 6*Log[1 + Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] - 6*Log[1 - Cos 
[(c + d*x)/2] + Sin[(c + d*x)/2]] + (2*Sin[(c + d*x)/4])/(Cos[(c + d*x)/4] 
 - Sin[(c + d*x)/4]) - (2*Sin[(c + d*x)/4])/(Cos[(c + d*x)/4] + Sin[(c + d 
*x)/4]) + 8*Sin[(c + d*x)/2] - Tan[(c + d*x)/4]))/(4*d*(a*(1 + Sin[c + d*x 
]))^(3/2))
 
3.5.76.3 Rubi [A] (verified)

Time = 0.94 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.50, number of steps used = 15, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.452, Rules used = {3042, 3359, 3042, 3252, 219, 3523, 27, 3042, 3242, 27, 2011, 3042, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a \sin (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (c+d x)^4}{\sin (c+d x)^2 (a \sin (c+d x)+a)^{3/2}}dx\)

\(\Big \downarrow \) 3359

\(\displaystyle \frac {\int \csc ^2(c+d x) \sqrt {\sin (c+d x) a+a} \left (\sin ^2(c+d x)+1\right )dx}{a^2}-\frac {2 \int \csc (c+d x) \sqrt {\sin (c+d x) a+a}dx}{a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {\sin (c+d x) a+a} \left (\sin (c+d x)^2+1\right )}{\sin (c+d x)^2}dx}{a^2}-\frac {2 \int \frac {\sqrt {\sin (c+d x) a+a}}{\sin (c+d x)}dx}{a^2}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {\int \frac {\sqrt {\sin (c+d x) a+a} \left (\sin (c+d x)^2+1\right )}{\sin (c+d x)^2}dx}{a^2}+\frac {4 \int \frac {1}{a-\frac {a^2 \cos ^2(c+d x)}{\sin (c+d x) a+a}}d\frac {a \cos (c+d x)}{\sqrt {\sin (c+d x) a+a}}}{a d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\int \frac {\sqrt {\sin (c+d x) a+a} \left (\sin (c+d x)^2+1\right )}{\sin (c+d x)^2}dx}{a^2}+\frac {4 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{a^{3/2} d}\)

\(\Big \downarrow \) 3523

\(\displaystyle \frac {\frac {\int \frac {1}{2} \csc (c+d x) (\sin (c+d x) a+a)^{3/2}dx}{a}-\frac {\cot (c+d x) \sqrt {a \sin (c+d x)+a}}{d}}{a^2}+\frac {4 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{a^{3/2} d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \csc (c+d x) (\sin (c+d x) a+a)^{3/2}dx}{2 a}-\frac {\cot (c+d x) \sqrt {a \sin (c+d x)+a}}{d}}{a^2}+\frac {4 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{a^{3/2} d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {(\sin (c+d x) a+a)^{3/2}}{\sin (c+d x)}dx}{2 a}-\frac {\cot (c+d x) \sqrt {a \sin (c+d x)+a}}{d}}{a^2}+\frac {4 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{a^{3/2} d}\)

\(\Big \downarrow \) 3242

\(\displaystyle \frac {\frac {2 \int \frac {\csc (c+d x) \left (\sin (c+d x) a^2+a^2\right )}{2 \sqrt {\sin (c+d x) a+a}}dx-\frac {2 a^2 \cos (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{2 a}-\frac {\cot (c+d x) \sqrt {a \sin (c+d x)+a}}{d}}{a^2}+\frac {4 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{a^{3/2} d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {\csc (c+d x) \left (\sin (c+d x) a^2+a^2\right )}{\sqrt {\sin (c+d x) a+a}}dx-\frac {2 a^2 \cos (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{2 a}-\frac {\cot (c+d x) \sqrt {a \sin (c+d x)+a}}{d}}{a^2}+\frac {4 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{a^{3/2} d}\)

\(\Big \downarrow \) 2011

\(\displaystyle \frac {\frac {a \int \csc (c+d x) \sqrt {\sin (c+d x) a+a}dx-\frac {2 a^2 \cos (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{2 a}-\frac {\cot (c+d x) \sqrt {a \sin (c+d x)+a}}{d}}{a^2}+\frac {4 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{a^{3/2} d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {a \int \frac {\sqrt {\sin (c+d x) a+a}}{\sin (c+d x)}dx-\frac {2 a^2 \cos (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{2 a}-\frac {\cot (c+d x) \sqrt {a \sin (c+d x)+a}}{d}}{a^2}+\frac {4 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{a^{3/2} d}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {\frac {-\frac {2 a^2 \int \frac {1}{a-\frac {a^2 \cos ^2(c+d x)}{\sin (c+d x) a+a}}d\frac {a \cos (c+d x)}{\sqrt {\sin (c+d x) a+a}}}{d}-\frac {2 a^2 \cos (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{2 a}-\frac {\cot (c+d x) \sqrt {a \sin (c+d x)+a}}{d}}{a^2}+\frac {4 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{a^{3/2} d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {4 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{a^{3/2} d}+\frac {\frac {-\frac {2 a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{d}-\frac {2 a^2 \cos (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{2 a}-\frac {\cot (c+d x) \sqrt {a \sin (c+d x)+a}}{d}}{a^2}\)

input
Int[(Cos[c + d*x]^2*Cot[c + d*x]^2)/(a + a*Sin[c + d*x])^(3/2),x]
 
output
(4*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/(a^(3/2)*d) + 
 (-((Cot[c + d*x]*Sqrt[a + a*Sin[c + d*x]])/d) + ((-2*a^(3/2)*ArcTanh[(Sqr 
t[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/d - (2*a^2*Cos[c + d*x])/(d* 
Sqrt[a + a*Sin[c + d*x]]))/(2*a))/a^2
 

3.5.76.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 2011
Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> 
 Simp[(b/d)^m   Int[u*(c + d*v)^(m + n), x], x] /; FreeQ[{a, b, c, d, n}, x 
] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c + d*x 
, a + b*x])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3242
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x 
])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n))), x] + Simp[1/(d*(m 
+ n))   Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^n*Simp[a*b*c* 
(m - 2) + b^2*d*(n + 1) + a^2*d*(m + n) - b*(b*c*(m - 1) - a*d*(3*m + 2*n - 
 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c 
 - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] &&  !LtQ[ 
n, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[ 
c, 0]))
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3359
Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + 
(b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[-2/(a*b*d)   Int[(d* 
Sin[e + f*x])^(n + 1)*(a + b*Sin[e + f*x])^(m + 2), x], x] + Simp[1/a^2   I 
nt[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^(m + 2)*(1 + Sin[e + f*x]^2), x] 
, x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1]
 

rule 3523
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + 
 f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - 
d^2))   Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a 
*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n + 2) + C* 
(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, 
 e, f, A, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - 
d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 
3.5.76.4 Maple [A] (verified)

Time = 0.12 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.35

method result size
default \(-\frac {\left (1+\sin \left (d x +c \right )\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \left (2 \sqrt {a -a \sin \left (d x +c \right )}\, \sin \left (d x +c \right ) \sqrt {a}-3 \,\operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (d x +c \right )}}{\sqrt {a}}\right ) \sin \left (d x +c \right ) a +\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {a}\right )}{a^{\frac {5}{2}} \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d}\) \(127\)

input
int(cos(d*x+c)^4*csc(d*x+c)^2/(a+a*sin(d*x+c))^(3/2),x,method=_RETURNVERBO 
SE)
 
output
-1/a^(5/2)*(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)*(2*(a-a*sin(d*x+c))^(1 
/2)*sin(d*x+c)*a^(1/2)-3*arctanh((a-a*sin(d*x+c))^(1/2)/a^(1/2))*sin(d*x+c 
)*a+(a-a*sin(d*x+c))^(1/2)*a^(1/2))/sin(d*x+c)/cos(d*x+c)/(a+a*sin(d*x+c)) 
^(1/2)/d
 
3.5.76.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 291 vs. \(2 (84) = 168\).

Time = 0.29 (sec) , antiderivative size = 291, normalized size of antiderivative = 3.10 \[ \int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\frac {3 \, {\left (\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right ) - 1\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} + 4 \, {\left (\cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right ) + 3\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 3\right )} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {a} - 9 \, a \cos \left (d x + c\right ) + {\left (a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) - a\right )} \sin \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1}\right ) + 4 \, {\left (2 \, \cos \left (d x + c\right )^{2} + {\left (2 \, \cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right ) + \cos \left (d x + c\right ) - 1\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} - a^{2} d - {\left (a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )} \sin \left (d x + c\right )\right )}} \]

input
integrate(cos(d*x+c)^4*csc(d*x+c)^2/(a+a*sin(d*x+c))^(3/2),x, algorithm="f 
ricas")
 
output
1/4*(3*(cos(d*x + c)^2 - (cos(d*x + c) + 1)*sin(d*x + c) - 1)*sqrt(a)*log( 
(a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 + 4*(cos(d*x + c)^2 + (cos(d*x + c) 
 + 3)*sin(d*x + c) - 2*cos(d*x + c) - 3)*sqrt(a*sin(d*x + c) + a)*sqrt(a) 
- 9*a*cos(d*x + c) + (a*cos(d*x + c)^2 + 8*a*cos(d*x + c) - a)*sin(d*x + c 
) - a)/(cos(d*x + c)^3 + cos(d*x + c)^2 + (cos(d*x + c)^2 - 1)*sin(d*x + c 
) - cos(d*x + c) - 1)) + 4*(2*cos(d*x + c)^2 + (2*cos(d*x + c) + 1)*sin(d* 
x + c) + cos(d*x + c) - 1)*sqrt(a*sin(d*x + c) + a))/(a^2*d*cos(d*x + c)^2 
 - a^2*d - (a^2*d*cos(d*x + c) + a^2*d)*sin(d*x + c))
 
3.5.76.6 Sympy [F]

\[ \int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\int \frac {\cos ^{4}{\left (c + d x \right )} \csc ^{2}{\left (c + d x \right )}}{\left (a \left (\sin {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

input
integrate(cos(d*x+c)**4*csc(d*x+c)**2/(a+a*sin(d*x+c))**(3/2),x)
 
output
Integral(cos(c + d*x)**4*csc(c + d*x)**2/(a*(sin(c + d*x) + 1))**(3/2), x)
 
3.5.76.7 Maxima [F(-1)]

Timed out. \[ \int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)^4*csc(d*x+c)^2/(a+a*sin(d*x+c))^(3/2),x, algorithm="m 
axima")
 
output
Timed out
 
3.5.76.8 Giac [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 165, normalized size of antiderivative = 1.76 \[ \int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\frac {\sqrt {2} \sqrt {a} {\left (\frac {3 \, \sqrt {2} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right )}{a^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} + \frac {8 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (2 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} a^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}\right )}}{4 \, d} \]

input
integrate(cos(d*x+c)^4*csc(d*x+c)^2/(a+a*sin(d*x+c))^(3/2),x, algorithm="g 
iac")
 
output
1/4*sqrt(2)*sqrt(a)*(3*sqrt(2)*log(abs(-2*sqrt(2) + 4*sin(-1/4*pi + 1/2*d* 
x + 1/2*c))/abs(2*sqrt(2) + 4*sin(-1/4*pi + 1/2*d*x + 1/2*c)))/(a^2*sgn(co 
s(-1/4*pi + 1/2*d*x + 1/2*c))) + 8*sin(-1/4*pi + 1/2*d*x + 1/2*c)/(a^2*sgn 
(cos(-1/4*pi + 1/2*d*x + 1/2*c))) - 4*sin(-1/4*pi + 1/2*d*x + 1/2*c)/((2*s 
in(-1/4*pi + 1/2*d*x + 1/2*c)^2 - 1)*a^2*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c 
))))/d
 
3.5.76.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{3/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^4}{{\sin \left (c+d\,x\right )}^2\,{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{3/2}} \,d x \]

input
int(cos(c + d*x)^4/(sin(c + d*x)^2*(a + a*sin(c + d*x))^(3/2)),x)
 
output
int(cos(c + d*x)^4/(sin(c + d*x)^2*(a + a*sin(c + d*x))^(3/2)), x)